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Determinantal forms for composite Schur and Q-functions 
via the boson-fermion correspondence 

P D Jarvis and C M Yungt 
DepMment of Physics, University of Tasmania, GPO Box 252C Hobaa, Australia 7001 

Received 20 September 1993 

Abstract. The boson-fermion correspondence is used to represent acomposite Schur function 
as a fermionic excectalion value. Wcck's theorem then enables it to be written as a determinant, 
generalizing the &belli formula for ordirmy Schur functions as singlehook determinants. 
TheSchur Q-function analogue, recently introduced in the context of the BKP hiwchy,  is also 
given. 

1. Introduction 

The algebra of free fermions has been used effectively in studying various problems in 
theoretical physics, chief amongst them the king model [I, 21 and the KP hierarchy and 
generalizations 13, 41. In this latter work by the Kyoto School (see [5] for a review), the 
so-called boson-fermion correspondence was a major tool enabling, for instance, the role 
of affine Lie algebras as symmetries of integrable hierarchies to be clarified. 

Recently, a method has been developed [6] to study the KP~hierarchy which is rooted 
in symmetric function theory 171. This method is based on the observation that the vertex 
operator underlying the hierarchy (and the related affine Lie algebra gf(c0)) are intimately 
connected with Schur (S-) functions. An important ingredient is the fact that matrix elements 
of the~vertex operator in an S-function basis are given by composite S-functions [SI, which 
were introduced earlier in the context of finitedimensional Lie algebras [9]. For instance, 
explicit evaluation of the composite S-function by means of a determinantal formula [IO] 
led to a new proof of the well known fact that Schur polynomials solve the KP hierarchy 
PI .  

The method of [6] can also be applied to the BKP hierarchy, with the role of S-functions 
this time played by Schur Q-functions. A particular Q-function series, with a similar 
structure~to the composite S-function, played a similarly important role there and was 
called the composite Q-function. A determinantal formula was lacking at the time and left 
as an open problem. In a later paper [ 1 I], which produced ~a new realization of the affine 
Lie algebra go(o0) on the space of distinct partitions, explicit calculations of composite 
Q-functions were-required. General results were conjectured on the basis of a number of 
small calculations based on the Q-function series'definition. However, the result of [ll] is 
but a generalization of that of [5]  on the realization of gf(o0) on the space of all partitions. 
This latter result, in turn, was obtained using the boson-fermion correspondence. This 
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thus strengthened the suspicion that the boson-fermion correspondence and the theory of 
composite S- and Q-functions are related. 

In fact, the boson-fermion correspondence has recently been invoked 1121 to prove 
certain S- and @function identities! In the present paper, we present the modification 
of [I21 necessary to derive determinantal formulae for both composite S- and Q-functions. 
The result for the composite S-function is different from the ones already available [lo. 131. 
Apart from being useful in the method of [6], it is expected that this new determinantal 
formula has applications in the representation theory of finite-dimensional Lie algebras 
and superalgebras (the original setting for composite S-functions). On the other hand, the 
(Haffian) formula for the composite Q-function allows the results of [ll] to be proved. 
More generally, the results here provide the link between the fermion-based techniques of 
[5] and the symmetric function theoretical method of [6]. 

P D Jarvis and C M Yung 

2. Review of composite S- and &-functions 

2.1. S-functions 

Let x = (XI, xz, xg, . . .) be an infinite number of indeterminates and denote (i, &,, . . .). 
Let P be the set of all partitions, with e.g. A (AI,  Az, . . ., An) E P being a pamtlon of 
[AI = cy='=, hi into l(h) = n parts with A I  > A2 > . ..A, > 0. Then for f i ,  U E P, the 
composite S-function s@&) is defined [9] as 

where A' denotes the partition conjugate to h and s&/. /~(x)  etc are skew S-functions defined 
in terms of S-functions SA(X) by sfi/r(x) =, cicgAs~(x), with cgA being Littlewood- 
Richardson coefficients. An S-function in turn is defined as 

S A ( ~ Y  = det (s(A,-i+j)(x))l~~.,~~A~ (2.2) 

C h , ( x ) P  = n(l -xit)-' 

with s(")(x) = h,(x) (n  E Z) being complete symmetric functions whose generating function 
is 

a3 m 

,=O i = l  

for n > 0 and s ( ~ ) ( x )  = 0 for n < 0. ,When f i  = 0 (the empty partition) the composite S- 
function s~Jx)  reduces to the ordinary S-function s&). The theory of symmetric functions 
can be found in [7], whereas [14] contains a survey of composite (and ordinary) S-functions 
with emphasis on applications to Lie (super) algebra representation theory. 

It is a fundamental fact that the set of S-functions { s ~ ( x ) ] ~ ~ p  forms a basis for the ring 
A(x)  of symmetric functions of x .  Furthermore an inner product ( , ) can be defined on 
A ( x )  such that the S-function basis is orthonormal: (sfi(x), sv(x ) )  = J K V ~  If D ( f )  for any 
symmetric function f denotes the adjoint with respect to ( , ) of multiplication by f, then 
the skew function s,,,c(x) admits an alternative interpretation as s I L / ~ ( x )  = 0(s~(x))sfi(x). 
Another important basis for A ( x )  is given by the set of power sum symmetric functions 
p l ( x )  p~,(x)pl~(x).-., with p, (x)  =xT+x?+. . .  . Thepowersum basisisorthogonal 
with respect to the same inner product and [7] 
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In transforming between the S-function and power sum bases, the following relations are 
useful: 

m 

~sA(x)sA(y)  = e x p ( C  APm(x)Pm(Y)) 

X(-l)’A’sA(x)w(Y) = exp -CApm(x)pm(Y) . 

m=i 
(2.4) 

A 

1 m 

. 
A ( *=I 

I .  Define the S-function ‘supersymmehic’ in the variables x = ( ~ 1 ~ x 2 ,  ...) and y = 
(YI, YZ, . . .) to be [I51 

sA(x/Y) = C ( - l ) ” ’ s A / p ( x ) s p ’ ( Y ) .  (2.5) 
&E? 

Then (sA(x/Y))A~~ forms a basis for the ring A(x/y) in which multiplication is’defined in 
exactly the same way as in A@), namely in terms of the Littlewood-Richardson coefficients. 
Furthermore, the relations (2.4) also hold with the arguments x and y replaced by x/w and 
y/z respectively, if’we define the supersymmetric power sum p.(x/y) to be po(x,fy) = 1 
and pn(x/y) = p.(x) - p,(y) for n > 1. With this in mind, all the subsequent results for 
S-functions in A(x) are equally valid for supersymmetric S-functions in A(x/y). 

As shown in [SI composite S-functions can be expressed in the form 

S ~ Z )  = ( - i P % d ~ ) ,  r(z)s,w) (2.6) 
where 

and the inner product is with respect to the ‘reference’ space A@). Due to (2.3) we can 
identify . -  

where Hk. k E Z, generates the Heisenberg algebra [H,, H.1 = m&+,,o. In a later section. 
this will be seen to be a key ingredient in the boson-fermion correspondence. The operator 
r(z) is then identified with . ~, 

If z = (ZI, zz, . . .) is specialized to Z I  = z, 0 = zz = z3 = . . . (with abuse of notation) 
then V(z) can be recognized as the simplest kind of vertex operator, involved in, for 
example, certain aspects of the KP hierarchy [SI. More generally, the specialization 
ZI = zz = . . . = za = z, 0 = zu+l = zU+z = . .’. (formally, for a. not a positive integer) 
results in the vertex operator 

familiar from string theory. On the other hand. the ‘supersymmetric’ case V(z/w), where 
z = (z1, zz, . . .) and w = (w1, w ~ ,  . . .) are specialized to z1 = z, 0 = z2 = z3 = . . .. and 
wl = w ,  0 = wz = w3 =  is the vertex operator involved in the definition of the~affine 
Lie algebra gl(c0) and also in the tau function bilinear identity of the KP hierarchy. If we 
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now identify p ~ ( y )  as the boson Fock state H-~,n-i,...lO), with H,IO) = 0 for n > 0, 
then the S-functions form an alternative basis for the boson Fock space and the composite 
S-function (2.6) has the interpretation a i  a vertex operator matrix element in the S-function 
basis. 

2.2. Q-$"ions 

Schur Q-functions were fust introduced in the theory of projective representations of the 
symmetric group. They play the role of S-functions for the space AB@)  spanned by power 
sums p,(x) with odd n. Firstly, let Pf(A) for any antisymmetric matrix ( A i j ) l ~ l , j ~ ~  of even 
size n denote its Pfafi5an defined inductively as 

PYA) = A12 

for n = 2, and for n > 2 

Pf(A) = A12Pf(A(")) - Ai3 Pf(A'l3)) + . . . + Ai. Pf(A""') 

where is the antisymmetric submatrix of A obtained by deleting the ith, jth rows and 
ith, j th  columns. Pf(A) is one of the square roots of det(A). In the next two sections, we 
will need to use the following two properties of Pfaff~ans 1121: 
(i) If A and X are n x n complex matrices and A is antisymmetric, then 

Pf(XAXT) = det(X) Pf(A) . (2.10) 

(ii) If B is an n x n non-singular complex matrix, then 

Pf ( ) = (-l)"'"-')/*det(B). -BT 0 (2.11) 

Q-functions are then defined as follows: For m,n > 0 define Q,(x) through the 
generating function 

and Qmn(x) by 
n 

Qmn(x)  = Qm(x)Qn(x) +2C(- l ) 'Qm+j(x)Q.- j (~) .  
j=l 

Note that Qm.(x) = -Qnm(x) and em&) = Q,(x). If m,n < 0 then set Qm(x)  = 
Qm.(x) = 0. For any A = (hi,.  . . , An) E DP, the set of partitions with distinct parts, the 
Q-function is defined as 

Q A ( ~ )  = Pf(Qnjxi(x)) (2.12) 
- - 

where A = A  for n even and A = (A,, .'..,A,, 0) for n odd. 

product ( , ) B  with respect to which Q-functions are orthogonal 
The set of Q-functions ( Q A ( X ) ] A ~ D P  forms a basis for AB(x) .  There exists an inner 

(QA(x), Q p ( x ) ) s  = ~ A & u  
where bA = 2'@). If D(f) denotes the adjoint with respect to ( , ) B  of multiplication by 
f ,  then skew Q-functions are defined by QA/,(x) = b;'D(Q,(x))Qi(x). Furthermore, 
D(p.(x)) = (n/2)a/apn(x) for n odd with respect to this inner product Note the factor of 
two difference between this and (2.3). 
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In the study of [6] on the KP hierarchy, composite S-functions arose in the form (2.6). 
The corresponding object for the BKP hierarchy had S-functions replaced by Q-functions 
and r (z )  replaced by 

This can be evaluated using the relation 

(2.15) 

(This definition differs from that in 161 by a factor bw) 
The theory of S-functions is well known to be connected with the combinatorics of 

Young tableaux’ [71. Similarly, composite S-functions are connected with composite Young 
tableaux 191 or rational tableaux [161, while Q-functions can be related to the theory of 
shifted tableaux 1171. It would be interesting to see if composite Q-functions have a 
meaning in this context. 

3. The boson-fermion correspondence 

3.1. Free fermions 

The algebra of (charged) free fermions 131 is given by (eiez C@j) @ (eiez C@T)  with^ 
defining relations [@i, @;) = (@;. @;] = 0, ( @ j ,  @;] = 8,. The Fock representation 3 ’ i s  
defined by the choice of vacuum IO) such that (different from [5 ] ,  same as 1121): @jlO) = 0 
for j < 0, @;IO) = ~ O  for j > 0. An inn& product ( , ) exists with respect to which the 
states &, . . . @j, . . .IO) with ir ~ 0 ,  j k  < 0 are orthonormal and @j and @; are adjoint to- 
each other. In other words, the vacuum expectation value (defined as (a) = (IO),a10)) for 
a E 3) of a product of n free fermions is given by 

. 

ij ~ i < 0 
( @ i @ , 3  I o  otherwise 

( @ i @ j )  = (@?@;*) 0 

for the case when n = 2 and the free fermions are either just @ j  or 9:. More generally we 
have Wick‘s theorem: 

pf((wiwj))  . n even 

n odd 
(3.1) ( w l w z . : . w n )  = 
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for any free fermions wi. Define the operator H, by H. = xi& : +i+;tn :, where : : 
stands for normal ordering. Then H,, acts on the free fermions as a shift operator, namely 
[H,, +il = +i-n, [Ha, 93 =~-@,$;'+., and furthermore H,[O) = 0 = (OlH-. for n =. 0. H. 
also generate the Heisenberg algebra. 

Introduce now the operator eX@) with H ( x )  = E,"=, !p,(x)H.. Then for n 2 0, m z 0 
we have 

P D Jurvis and C M Yung 

(,XW +rn+G.l,) = (-~)"sc*.l")(x). (3.2) 

eX(x)+(z)e-H"' = +(z),exp C ; p . ( x ) z "  (3.3) 

This is proved by making use of relations like 

<", ) 
w k e  +(z)  = EiEE +tz', to write the left-hand side of (3.2) as 

n 

x(-l)ks(mtn-k) (x)s( lk)(x)  
k=O 

which is then recognized as the expansion along the first row of the determinantal expression 
of the right-hand side of (3.2) according to (2.2). 

There exists another determinantal definition of S-functions (due to Giambelli), being 
[71 

where r (A)  is the Frobenius rank of A, being the number of boxes along the main diagonal 
of its corresponding Young diagram. Note that {Ai - i J i=~  ..._. Q.) and {Ai - i J i=~  ,_..., (A)  are 
respectively the arm and leg lengths of the Young diagram and each is a positive and 

r ( i )  I strictly decreasing set. Let a(A) = - i) and b(A) = xi=, (Ai - i) be respectively 
the number of boxes above and below the main diagonal of the Young diagram for A. Now, 
on using (3.2). SA@) can be written as a determinant whose (i. j)th entry is given by the 
fermionic expectation value (-l)A;-j(exh)+Aj-i+, +:A!t,). Using a special form of Wick's 
theorem (which is implied by (3.1) upon application df (2.11)), given by, 

(PI . .  . YnY;. . . Y;) = det ((YiYJ) 

and valid for free fermions of'the form Yi =~Cui j+ j ,  Y,? = xbjj+,?, the S-function can 
thus be represented in the form [5, 121 

(3.5) 
Note that in arriving at (3.3, we have made use of the fact that the vacuum expectation on 
its right-hand side can be written as ( ( e H ( x ) ~ A ~ e - H ( x ) ) ( e H ( x ) ~ A ~ e - H ( x ) ) .  . .). which is valid 
since e-H(x)lO) = 10). 

Equation (3.5) demonstrates explicitly the isomorphism of the map u from 3 ( O ) ,  the 

U ( U I O ) )  = (ex@)u) (3.6) 

S h ( X )  = (-1) b(A)t~(A)(~(A)-1)/2(eH(x)+A~ . . . +A,(~~-~(A)+I+:A;+I ... C . ; c A ) + r ( A ) ) .  

charge-zero sector of the fermionic Fock representation, to h ( x )  given by [3] 

for a given u10) in go). This is known as the boson-fermion correspondence. The 
Heisenberg generators H. (which consti,tute the bosons) can be seen to act on A(x) via 
(cf (2.8)) 

c7HkU-I = D(pk(X)) k > 0 

0 H - k D - I  = pk(X) k > O .  
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Furthermore, the inner products on A ( x )  and F0) can be shown to be related by 

(U @lO)),u (blo))) = (aIO),blO)) (3.7) 
for any a10) and 610) in Po). Finally, we note the relation oV(z)u-' = r(z) which we 
will use later in deriving a determinantal formula for composite S-functions. 

3.2. Neutral free ferm'ons 

We turn now to the algebra of free neutral fermions [4], given by.@i,gJC@i with defining 
relations (@,,,, @") = (-l)m&,,+n,~. The Pock representation 3, is defined with the choice 
'of vacuum &IO) for i 10. An inner product ( , ), exists. with respkct to which &, . . .IO) 
with ik 2 0 is orthogonal and @j is adjoint to (-l)j@-,. The vacuum expectation value of 
a product of n neutral free fermions is then given by 

(-IY&+~,O. i c 0 

&@j) = 0 i >-0 1. TSj.0 i = O  

for the case n = 2 and more generally by Wick's theorem of the same form as (3.1). Define 
the operator H: by H," = 4 xiEz(-l)f-l@i@-n-i. Then we have [H:, @&= @i-. and 
H.10) = 0 = (OIH-, for n > 0. H. can also be shown to generate the Heisenberg algebra 

with HB(x) = Enadd :pn(x)a:.  On using the 
41 = !$5tz+n.o. 

Introduce now the operator 
relation 

) eHn(x)@(z)e-H8(x) = +(z) exp( ;p.(x)zn 
n add 

where @(z) = xiez@;zi, we have the following result: Form, n > 0, 

(eHB(x)@m@n.) = $Qm&): (3.8) 

Comparison with (2.12) leads to a representation of QA(x) as a F'faffian of a matrix whose 
( i ,  j) th element is Z ( e H ( x ) @ ~ , @ ~ j } .  On application of Wick's theorem, we arrive at [18] 

eAcx) = 2KA)/*(eHn(x)g A! 4. Ai . . . .@- At,i ) )  (3.9) 

where l (2)  = l (h )  ( l (A)  + 1) if l(A) is even (odd). 
Equation (3.9) shows the isomorphism of the map U, from e, the subspace of 3 8  

UB (a1O)) = (eH"'")a) (3.10) 

for a10) E e. The whole Fock representation F, is isomorphic to two copies of AB(x). 
One can show that the Heisenberg operators H," act on A&) via 

. containing stam @i, . . . @ja IO) with n even, to A B @ )  given by [4, 181 

UBH~U, '  = D(Pn(X)) 

UBH-nC-' = pn(x) 

for n positive and odd. The inner products on AB(x) and e can also be shown to be 
related by 

(3.11) (U~(alo), U ~ ( b l 0 ) ) ) ~  = (a10). blo)), 
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for a]O) and b10) belonging to e. Finally, referring back to (2.13), we have UB VB(Z)U;’ 
where the vertex operator V B ( Z )  is defined as 

P D J R N i S  and C M Ymg 

4. Determinantal forms 

4.1. Composite S-functions 

We now derive a determinantal formula for the composite S-function. From (2.6) and the 
boson-fermion correspondence (equations (3.6), (35) and (3.7)), we obtain 

sg:.(z) = (-1P’ (U-1 ( S J X ) ) ,  V ( z ) a - ’  (s&))) 
- - ( - ~ ) l ~ l ( - ~ ) a ( ~ ) t ~ ( ~ - l ) / Z ( - ~ ) b ( ~ ) t m ( m - l ) / Z  

where we have set n = r (p ) ,  m = r(v). The fermionic expectation value in (4.1) can be 
written, on applying Wick‘s theorem, as 

O A  O B  
o c  

(4.2) 

where A, E ,  C, D are the matrices 

D = ( ( V ( t ) ( z ) e ~ ~ - ~ + i e ~ ~ j t , ) ) l < l . j < ~  

and V(*)(z) have been defined to be V(-)(z)  = exp(Czl  ipk(z)H-k) and Vct)(z) = 
exp(- ELl !pk(f)Hk) so that V(-)(z)V(+)(z)  = V ( z ) .  The Pfaffian (4.2), on performing 
row and column transformations and using (2.10) and (Zll), reduces to 
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which are proved in a similar manner to (32) ,  to evaluate the entries in the matrices 
A ,  B ,  C, D, the determinant in (4.3) (upon transposition) becomes 

In getting from (4.1) to (4.4), all'the signs cancel out (upon recognizing that b(p )  + a ( p )  + 
r (p )  = 1/11) and the determinant in (4.4) itself can be rearranged to give the final result: 

The top left and bottom right blocks are simply the Giambelli matrices for S-functions. It 
is thus clear that the special cases s,j:,(z) = s,(z) and S & : ~ ( Z )  =~s,(:) hold. So too does 

The determinant (4.5) for a composite S-function appears to be new. There exists two 
the condition si:Jz) = q&(;). 1 

other determinants for S ~ : ~ ( Z ) ,  the first being [lo] 

(4.6) 

and used in [61 to prove that Schur polynomials solve the KP hierarchy. Here, m 3 
max(p1. p',, V I ,  U;) and ui = 0 for i =- l (u) .  The determinant (4.6) (with z specialized to 
N variables, N arbitrary) was derived by making use of yet another determinant form for 
an S-function (due to Foulkes) 

SA(Z) = det (s(k;-i+1.1m-j)(Z)) (4.7) 

where m 3 max(A1, Ai), and relating them by means of a known relation between U(N) 
characters of which both S A ( Z )  and sp,.(z) can be so considered. In (4.7), S(~.~')(Z) for p < 0 
has to be interpreted as being (-l)*S,~.o. In fact, this is consistent with (3.2) since ll;R can 
then be moved past q-q to annihilate the vacuum. Hence, the Foulkes determinant (4.7) 
leads us, by exactly the same arguments as for the Giambelli determinant, to an alternative 
representation of the S-function as a fermionic expectation value: 

sA(z )  = (eH(')@A~@A~ " ' ~ A ~ - m + l ~ ~ - f , + l J l l m + z " ' t l r o * ) .  (4.8) 

It is conceivable, but not altogether obvious, that using this representation instead of (3.5) 
and going through the analogous steps to those for deriving (4.5) will lead us instead to 
(4.6). 

Both (4.5) and (4.6) can be considered as 'reduced' determinantal forms, being 
respectively of rank r ( p )  + r(w) and max(pl, pi, U], U;). For completeness, we present 
the third determinantal form known for sp,.(z), given by [13, 191 

(4.9) 

where 1 < i, j < V I  ,1 < k, 1 < p1 and i, j ,  k, 1 have to be read from top to bottom, left to 
right, bottom to top and right to left, respectively. A Laplace expansion of the determinant 
in (4.9) can be seen to be just the S-function series in the definition (2.1). For typical 
partitions f i  and U, the form (4.5) is the most economical and (4.9) the least. 
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4.2. Composite Q-functions 

By (2.14) and the equations of the boson-fermion correspondence ((3.9), (3.10) and (3.11)), 
the composite Q-function can be written in the form 

P D Jawis and C M Yung 

Qpdz)  = (-1)l'" (G ' (Qdx)) ,  VB(Z)U;'(Q,(X))) 

- - ( ~ ~ ) l ~ l ~ ~ ~ c ~ / z t f ~ ~ / z ~ ( ~ ~ ) l u l ( ~ ~ ) i ~ c ~ ~ f ~ : ~ - l ~ / z  

x (@-Cl . . ' @-$;, VB (z)@fit ' ' ' @fi,ej ) . (4.10) 

By applying Wick's theorem, the fermionic expectation value in (4.10) can be written as 
the Pfaffian 

(4.11) 

(4.12) 

where A and B are diagonal matrices with entries Aij =~ ( ( - l ) c i / & Y i j  and Bij = 
( ( - l ) f i~ /&)&j  respec6vely. Upon resolving the sign changes and the factors of d? one 
finds that the composite Q-function becomes 

Alternatively, the sign factor can be absorbed into the Pfaffian to obtain 

(4.13) 

The similarity in form between the maEices in (4.5) and (4.13) is miking. The top left and 
bottom right blocks in (4.13) are just matrices through which Q-functions are defined. It 
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is apparent that the special cases Qa,,(z) = Q,(z), Qi&) = e,(+) hold. To see that the 
condition QpJz) = Qs;,($) also holds, it is sufficient to note that 

for any pair of square matrices A and C of size m and n respectively; and if m is even (and 
by necessity also n) then the determinant is 1.  

5. Conclusion 

In this paper we have obtained new determinantal forms for composite S- and Q-functions 
by making use of the boson-fermion correspondence along the lines of [12]. Although this 
work was principally motivated by the wish to relate the formalism of [6] for the KP hierarchy 
to that of [3], it has thrown up a bonus regarding possible applications to the representation 
theory of finite-dimensional Lie (super) groups and algebras. To conclude, we name but 
two instances where determinantal formulae for composite S-functions have been useful: 
(i) equation (4.6) was used to derive a Robinson's hook length-type dimension formula 
for mixed tensor irreducible representations of U ( N )  [ZO]. (ii) In studying supercharacters 
of U ( M / N )  associated with composite S-functions,~ equation (4.9) was used to derive a 
modification rule used to express 'non-standard' supercharacters in terms of 'standard' 
supercharacters [19], required for instance in the interpretation of branching rules. The new 
determinantal form (4.5) can likewise be expected to be of use. 
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